
Debugging for Reactive Programming

Guido Salvaneschi, Mira Mezini
Technical University of Darmstadt, Germany

{salvaneschi,mezini}@cs.tu-darmstadt.de

ABSTRACT
Reactive programming is a recent programming technique that pro-
vides dedicated language abstractions for reactive software. Reactive
programming relieves developers from manually updating outputs
when the inputs of a computation change, it overcomes a number
of well-know issues of the Observer design pattern, and it makes
programs more comprehensible. Unfortunately, complementing the
new paradigm with proper tools is a vastly unexplored area. Hence,
as of now, developers can embrace reactive programming only at
the cost of a more challenging development process.

In this paper, we investigate a primary issue in the field: debug-
ging programs in the reactive style. We analyze the problem of
debugging reactive programs, show that the reactive style requires a
paradigm shift in the concepts needed for debugging, and propose
RP Debugging, a methodology for effectively debugging reactive
programs. These ideas are implemented in Reactive Inspector, a
debugger for reactive programs integrated with the Eclipse Scala
IDE. Evaluation based on a controlled experiment shows that RP
Debugging outperforms traditional debugging techniques.

Categories and Subject Descriptors
D.2.6 [Programming Environments]: Interactive environments

Keywords
Functional-reactive Programming, Debugging

1. INTRODUCTION
Reactive programming (RP) has been proposed as a viable alter-

native to the Observer design pattern in developing reactive appli-
cations such as graphic user interfaces, animations and event-based
systems. The idea behind RP is to support language-level abstrac-
tions for signals – time-changing values that are automatically up-
dated by the language runtime. In RP, programmers specify the
functional dependency of a signal on other values in the application
and changes are automatically propagated when it is required. This
way, programmers do not risk to forget updating dependent values
and benefit from a programming style that is easier to read – thanks

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE ’16, May 14-22, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-3900-1/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2884781.2884815

the declarative approach of RP – and supports composition – as
signals can be composed to define other signals. It has been shown
that applications based on RP are more composable [33]. Our earlier
studies also suggest that RP is less error prone [48] and easier to
understand [46] than the Observer design pattern.

RP witnessed a long incubation in experimental research projects,
which clarified the semantics foundations [12] and investigated the
issue of providing a sound [19] and efficient [13] implementation.
Since then, researchers proposed several RP implementations such
as FrTime [7] (Scheme), Flapjax [33] (Javascript), Scala.react [27]
(Scala) and DREAM [29] (Java) – just to mention a few. Recently,
concepts from RP have been adopted in a number of front-end
Javascript libraries like AngularJS.js, Razor.js, React, Web frame-
works like Scala Lift, and by Microsoft’s Reactive Extensions (Rx),
popularized by the Netflix success story.

RP abstractions are now well understood and properly supported
in a variety of languages. Yet, programmers that want to embrace
RP have to face a number of challenges due to the immaturity of the
field. A primary issue concerns supporting RP in the entirety of the
development process through a proper tool ecosystem. In particular,
novice RP developers struggle for the lack of proper debuggers –
essential instruments to fix errors and understand programs since
the early age of computing.

Of course, modern IDEs provide support for debugging high-
level languages, but, unfortunately, existing debuggers are hardly
useful for RP applications. The issue is a conceptual one. Existing
debuggers are inherently based on the imperative programming
model for which they have been designed and they are unsuitable
for the declarative and data flow-oriented model of RP. Concepts
like stepping-over statements, breakpointing or inspecting memory
changes assume an imperative model where statements execute one
after the other and modify memory state. Designing a debugger for
RP requires a paradigm shift.

In this paper, we propose a novel debugging technique, RP De-
bugging, which addresses the urgent needs of developers when
debugging applications in the RP style. The key contribution is
to adopt the dependency graph among signals – the same model
developers adopt to reason about reactive applications – as a primary
runtime representation of the program during the debugging process.
We show that well-known concepts from traditional debugging find
a natural mapping into this model. RP Debugging is implemented
in Reactive Inspector, a plugin for the Eclipse IDE. A controlled
experiment confirms the benefits of RP Debugging. In summary,
this paper makes the following contributions.

• We propose RP Debugging, a debugging technique that specifi-
cally addresses applications written in the RP style. The design
of RP Debugging is motivated by our experience in RP on sev-
eral projects, requirements observed on independent projects and

2016 IEEE/ACM 38th IEEE International Conference on Software Engineering

 796

a preliminary study based on 89 subjects. We show that tradi-
tional debugging concepts have an elegant counterpart in RP
Debugging.

• We analyze the debugging process of reactive applications and
identify common error patterns. We show that in contrast to
traditional debugging techniques, which hardly help for such
applications, RP Debugging is effective.

• We provide Reactive Inspector, a reference implementation for
RP Debugging, in the form of an Eclipse plugin. We evaluate
Reactive Inspector with a controlled experiment involving 18
subjects which confirms its advantages over traditional debugging
for reactive applications.

Reactive Inspector and the data collected in the experiments are
publicly available.1

2. BACKGROUND
Reactive applications are traditionally developed in OO program-

ming by using the Observer design pattern. This solution has been
criticized for a long time. For example, as handlers typically return
void and perform their action via side effects, reactions cannot be
composed. Also, the execution of the application depends on both
control and data flow, which complicates program comprehension.
Finally, inversion of control makes automated analysis of reactive
applications hard. The interested reader can refer to [33] for a
complete overview.

RP solves the aforementioned problems by introducing time-
changing values, often referred to as behaviors or signals (in the rest,
we use the latter, conforming to most of Scala literature). Signals
are essentially constraints that are automatically enforced by the
language runtime by recalculating their value when an inconsistency
is detected.

For illustration, consider the code snippet in Figure 1. It defines
two vars a and b (Lines 1-2), i.e., reactive values that, in contrast
to signals, can be imperatively updated. Line 3 defines a signal
s which depends on a and b according to the signal expression
a()+b(). The () notation inside signal expressions establishes a
dependency among reactive variables. Signals can depend on vars
and on other signals, like in Line 4. When a var is updated (Line 8),
the signals that depend on the var are automatically updated without
programmer intervention (Lines 9-10). It is easy to see that the
relation between signals and vars can be described by a directed
graph where edges model dataflow dependencies. Operationally, a
change in a node of the graph triggers a reevaluation of the signal
expressions in the dependent nodes. This is actually the implemen-
tation technique adopted by most RP frameworks. Figure 2 shows
the evolution of the dependency graph for the code in Figure 1.
Lines 1-4 in Figure 1 correspond to node creations (steps 1-2-3-6 in
Figure 2) and dependency construction (steps 4-5-7). A var update
(Line 8) triggers a reevaluation in the graph (steps 8-10).

Simple as it is, this programming paradigm proved effective
in managing the complexity of reactive applications in a number
of fields, including Web applications [25], interactive GUIs [33],
animations [8], wireless sensor networks [34] and robotics [19].
For example, the application in Figure 3 shows a validation form
in a Web application. The pwd signal contains the current input
of the user in the password field. Consistently with existing RP
frameworks, we assume that the graphic library in use is signal-
aware and directly provides such value as a signal, e.g., via the
Window.PwdField field (Line 1). The application requires that the
password is at least 6 characters long and contains at least a digit.
1http://guidosalva.github.io/reactive-inspector/

1 val a = Var(1)

2 val b = Var(2)

3 val s = Signal{ a() + b() }

4 val t = Signal{ s() + 1 }

5 println(s.get()) // 3
6 println(t.get()) // 4
7

8 a()=4

9 println(s.get()) // 6
10 println(t.get()) // 7

Figure 1: Signals and vars in RP.

a,1 a,1 b,2

s,?

a,1 b,2

s,?

a,1 b,2

t,4

s,3

a,4 b,2

t,4

s,6

a,4 b,2

t,7

s,6

a,4 b,2

(1) (2) (3) (4)

s,3

a,1 b,2

t,?

s,3

a,1 b,2

t,4

s,3

a,1 b,2

(5)

(6) (7) (8) (9) (10)

Figure 2: Evolution of the dependency graph.

These conditions are expressed by the hasEnoughChars signal
and by the containsDigit signal (Lines 2-3). The form color,
expressed by the signal in Line 5, is green only if the password
inserted by the user is valid, red otherwise. Similarly, a proper
warning message is displayed depending on which condition is not
satisfied (Line 11). Crucially, the entire application is written in a
declarative style where each entity is determined by its definition
and no callbacks are required.

3. DESIGNING RP DEBUGGING
RP Debugging is a new debugging paradigm which provides

support to inspect and reason about the flow of changes through
a reactive application. When an application is debugged with RP
Debugging, the user can visualize the dependency graph and use it
as the basic model for reasoning about the application execution.

In the rest of this section, we will first motivate the need for a
new debugging approach for reactive applications by a discussion of
the conceptual mismatch between the concepts underlying RP and
traditional debuggers followed by some empirical evidence collected
in a preliminary study and by experience with reactive application
development. Subsequently, we provide a high-level overview of
the features of the RP Debugging approach proposed in this paper.

3.1 Motivation
Limitations of Traditional Debuggers.

Debuggers can provide different functionalities [37, 39, 45, 4,
8], but the fundamental feature is to interrupt the execution of the
program regularly (stepping) or in certain points of the execution
(breakpoints) to better understand the program flow and inspect the
intermediate states of the memory. This model, developed in the
old times of assembly languages, is still adopted for modern high
level OO languages. Such approach is inherently designed for an
imperative, shared memory based, control-flow driven programming
model. It is however unsuitable for RP – functional, based on
immutable data and data-flow driven. In the rest, we analyze this
mismatch in detail:

797

1 val pwd = Window.PwdField // Input signal
2 val hasEnoughChars = Signal{ pwd().size() > 6 }

3 val containsDigit = Signal{ pwd().contains("0..9") }

4

5 val formColor = Signal{

6 if (hasEnoughChars() && containsDigit())

7 Color.GREEN

8 else
9 Color.RED

10 }

11 val warningLabel = Signal{(

12 if (!hasEnoughChars()) "Password too short!"

13 else " ") + (

14 if (!containsDigit()) "A digit is required!"

15 else ""

16)}

Figure 3: A validation form implemented with RP.

• Imperative vs. declarative. In imperative programming, devel-
opers explicitly define control flow by means of control structures.
This way, they can reason about memory states and changes, and
instruction reachability [23]. Instead, in RP, programmers do
not explicitly define control: RP is declarative and the execution
flow among the evaluation of signal expressions is implicit and
data driven. Hence, a debugger that is only designed for explicit
control structures ignores a fundamental part of the execution
flow of a RP application.

• Lack of abstractions. Traditional debuggers are not aware of
RP abstractions like dependencies among signal expressions or
change propagation in the dependency graph. Hence, program-
mers are forced to reason in terms of the low level concepts that,
in the specific RP framework, are used to implement RP. This
state of the affairs is similar to a debugger for low level lan-
guages which – ignoring exceptions – steps through the GOTO
statements that implement exceptions in that specific runtime.

• Mismatch in the mental model. The runtime model adopted
by traditional debuggers is the execution stack. In RP, instead,
developers reason in terms of dependency graph, are interested in
knowing which dependencies are active at a certain point in time
and use the dependency graph as the runtime model to understand
the evolution of reactive applications (Section 3.1).

Collecting Empirical Evidence.
The validity of the dependency graph as the reference model to

reason about RP programs is suggested by a number of indepen-
dent experiences. Over the years, we observed that programmers
spontaneously develop the solution of an explicit representation
of the dependency graph. Besides our personal experience as RP
developers [47, 48, 10], students involved in classes on RP [46] inde-
pendently developed small applications to visualize the dependency
graph. These systems adopt various technologies (e.g., Graphviz,
Flash) and offer different levels of refinement, but all of them focus
on displaying the evolution of the graph over time. Also, practi-
tioners developed similar representations [41, 21, 42]. While none
of these approaches offers all features of RP Debugging, these
attempts strengthen our confidence in the solution we propose.

The design of RP Debugging has been conceived during the
development of a number of reactive applications publicly available.
These include software we developed from scratch, like a distributed
drawing application, an RSS feed reader and a text editor. Also,
we refactored existing applications to use RP, such as the Swing
Scala library, the Twitter API and a minimal reactive version of the
Scala collections framework [2]. The bugs presented in Section 4
are drawn from this experience and the functionalities we selected
for RP Debugging are those we needed during development.

Q1 I tried to use a debugger with a RP program at least once Y/N

Q2 Traditional debuggers (stepping over statements, break-
points, variables inspection) are *not* suitable for RP be-
cause these operations are hardly applicable to the declara-
tive RP model.

Likert

Q3 Which features would you like to see in a debugger that
specifically targets RP?

Open

Q4 Visualizing the dependency graph would help debugging RP
programs.

Likert

Q5 Visualizing the propagation of the values in the dependency
graph would help debugging RP programs.

Likert

Figure 4: Questions in the preliminary study.

To achieve a more objective view of the limitations of traditional
debugging in the RP context and to collect guidelines for the design
of RP Debugging, we organized a preliminary study involving 89
subjects. All of them are 3rd/4th year students from a CS program
attending an advanced Software Engineering class which includes
two lectures (2h + 2h) and homework on RP. The problem of debug-
ging RP programs was never discussed during the lectures. Subjects
were given the questionnaire in Figure 4. Order avoids that certain
questions influence the answer to others, especially Q4 and Q5 can
bias Q2. Y/N indicates a Yes/No answer, Likert indicates a 1-5
Likert scale (Strongly agree - Agree - Neither agree nor disagree -
Disagree - Strongly disagree), Open is for an open text question – in
Q3 we let the answer optional to collect only genuine suggestions.

According to the answers of Q1, 21 subjects attempted to use a
(traditional) debugger with a RP program. Given that students were
not suggested to use a debugger during the lectures/homework, we
consider this low number not surprising.

The answers to Q2 show that traditional debuggers are considered
unsuitable for RP by the majority of subjects (Figure 5 top). This
trend seems to be stronger if we consider subjects who actually tried
to debug RP programs (Figure 5 bottom left) than subjects who
didn’t (Figure 5 bottom right). However, statistical tests are only
close to significance in showing a difference between populations
(Mann-Whitney U test, p = 0.066 > 0.05).

In total 36 subjects answered Q3. Among them, 14 explicitly
mentioned the visualization of the dependency graph (e.g., “Nav-
igating the dependecy graph”). A separate set of 10 subject did
not explicitly mention the dependency graph but proposed features
that also inspired the design of RP Debugging, e.g., “See how
the computation values flow through, when one value is changed”,

“Live monitoring of the dependencies and snapshots of the whole
environment at the time of a certain execution”, “That it shows the
current and the last value of a Signal” and “Possibility to step to
next point in program execution when a specific event fires”. This re-
sult strengths our confidence that visualizing the dependency graph
and its evolution is a real need for developers.

Finally, the answers to Q4 and Q5 (Figure 6) also suggest that
visualizing the dependency graph and change propagation through
the graph is a desirable feature. In Q4 and Q5, 96.62% – respectively
87.64% – of the subjects answered strongly agree or agree.

3.2 RP Debugging in a Nutshell
Main Features of RP Debugging.

RP Debugging consists of adopting the dependency graph as the
model to reason about RP code. It includes the following features:

• At the definition site of the signals, the user can step through the
construction of the graph, visualizing the creation of new nodes
and of new dependencies among reactive values as soon as they
are established. We demonstrate this feature in Sections 4.1, 4.4.

798

Figure 5: Answers to Q2 (top) and their breakdown for Yes in
Q1 (bottom left) and No in Q1 (bottom right).

Figure 6: Answers to Q2 (left) and Q5 (right).

• When the execution reaches the assignment of a var, the content
in the nodes of the dependency graph starts changing. Similar
to what developers would do with lines of code in imperative
programming, they can step through the update of values in the
dependency graph, and control the potentially changing shape of
the graph to make sure it reflects their intentions. This feature is
demonstrated in Section 4.3.

• Programmers can set (conditional) breakpoints on the update
of a node. The execution continues to traverse imperative and
reactive code in the application until the node update is hit. At
this point the reactive debugger stops and returns the control to
the developer. This feature is demonstrated in Section 4.2.

• Programmers can inspect the performance of an application on a
per node basis (absolute performance). Also, in RP Debugging
developers can observe the number of times a node outputs a
different value as a percentage of reevaluation times (relative
performance). This information is particularly useful to detect
performance bugs related to erroneous graph configurations. This
feature is demonstrated in Section 4.5.

Paradigm Shift.
Figure 7 shows how the main concepts of traditional debugging

find a counterpart (=⇒ in the rest) in RP Debugging.
Stepping Users step over code to execute a statement at a time.

As the execution is slowed down, the user can check the actual
control flow of the application and stop the execution at interest-
ing points. =⇒ Stepping over statements makes little sense for
declarative languages. The user can step through the node update
propagation in the dependency graph.

Breakpoints Stepping until a certain point in the execution may
be tedious. Users can ask the debugger to stop the execution when
an instruction in the flow is hit. =⇒ Users can stop the execution
when a node in the dependency graph is evaluated and the result of
its expression is updated.

Inspect memory During stepping, programmers can inspect the
content of the memory, i.e., the active variables in the stack frame
and the visible objects on the heap. =⇒ Programmers can inspect

Traditional Debugging RP Debugging
Stepping over statements Stepping over the dep. graph

Breakpoint on line X Breakpoint on node X
Inspect memory Inspect values in the dep. graph

Navigate object references Navigate signals in the graph
Per-function absolute performance Per-node relative performance

Figure 7: Traditional debugging vs. RP Debugging.

1 val inputPacket = Eth0.lastPacket()

2 val toggleButtonOn = GUI.button1.content

3

4 val lastPacket = Signal{

5 if (toggleButtonOn.get)

6 inputPacket().getAllContent()

7 else
8 inputPacket().getHeader()

9 }

10 GUI.lastPacketSlot(lastPacket)

Figure 8: Missing dependencies.

the current value of the reactive variables in the graph and inspect
the dependency relations among them.

Navigate objects structure In OO debuggers, programmers can
navigate object fields to inspect the objects structure. =⇒ Program-
mers can access vars and signals declared in the code to inspect the
dependency graph they originate.

Performance In traditional debuggers, performance is analyzed
on per function basis and it is absolute (time spent in each function).
=⇒ Programmers analyze per node absolute performance and can
inspect relative performance as fraction of node reevaluations that
issued a new value.

4. RP DEBUGGING AT WORK
In this section, we discuss common issues in RP programs and

the use of RP Debugging to solve them.

4.1 Missing dependencies
Designing a reactive application requires to express the correct

dependencies among reactive entities to make sure that changes are
properly propagated. A common source of bugs is to erroneously
specify dependencies, for example forgetting to establish one. Un-
fortunately, this results in bugs that are hard to detect as they do
not make themselves catastrophically apparent (e.g., with excep-
tions). Conversely, dependent values are simply not updated and the
application becomes less reactive.

Missing dependencies are hard to detect with traditional debug-
gers. Consider the code in Figure 8, a snippet from a network packet
sniffer, which displays the header of the detected packets. We focus
on a specific functionality: toggling a button displays not only the
header, but the whole content of the last sniffed packet – stored in
the inputPacket signal. The current display format for the packet
is modeled by the lastPacket signal (Line 4). Depending on the
state of the toggle button (Line 5), lastPacket can be the com-
plete packet content or the header only (Lines 4-9). Finally, the last
received packet is displayed in the desired format (Line 10).

Unfortunately, when the programmer executes the application,
she realizes that toggling the button has no effect, i.e., the last
packet remains in the same format. More surprisingly, the issue
is temporary: The next packet is displayed in the right format.
The bug is subtle: Inside the signal expression in Lines 4-9, the
dependency on the toggleButtonOn variable is expressed using
the get call2 (Line 5). In contrast to the () method, which creates a
dependency on the signal in the immediately outer scope and returns
2Parameterless methods do not require parentheses in Scala.

799

1 val time = App.time // Global time signal
2

3 class Square(center: (Signal[Int],Signal[Int]),

4 side: Signal[Int]){...}

5 class Circle(center: (Signal[Int],Signal[Int]),

6 radius: Signal[Int]){...} ...

7 class Picture(original: Image, scale: Signal[Int],

8 center: (Signal[Int],Signal[Int])){

9 val size = Signal{ original.size / scale() } ...

10 }

11 val slowIncreasing = Signal{ time() / 100 }

12 val fastIncreasing = Signal{ time() / 10 }

13 val pulsing = Signal{ (time() % 10) / 50 } ...

14 val quadratic = Signal{ time() ∗ time() }

15

16 new Circle((fastIncreasing,fastIncreasing),pulsing)

17 // ...More combinations!

Figure 9: Fragment of an animation in RP.

the current value, get only returns the current value of the signal.
As a result, when toggleButtonOn is updated, lastPacket is not
consequently updated. When the next packet arrives, the signal
expression is reevaluated, get() reads the most recent value of the
button, and the packet is displayed in the correct format.

A traditional debugger provides no hint on why, upon toggling
the button, the behavior of the application does not change. Instead,
thanks to RP Debugging, developers can easily spot that the de-
pendency between toggleButtonOn and lastPacket is missing.

Interestingly, the dual of the bug above, i.e., the presence of a
dependency that is unintentionally established, is also a common
issue in RP. One can incur in such bug when dependencies are col-
lected in the entire control flow of a signal expression – like e.g., in
Scala.react [27]. In this case, a sequence of deeply nested calls orig-
inating from the expression can result in an unintended dependency
being established. Similar to the previous case, RP Debugging
would help developers detecting this spurious dependency.

4.2 Bugs in Signal Expressions
A common design for animations in the RP style (Figure 9) is

to use a time signal (Line 1) as a source of change for the whole
animation. Lines 3-10 show graphic elements that can be added to
the animation and receive signals as input. This way, position and
dimension of each graphic elements depend on time through certain
effects (Lines 11-14), e.g., the quadratic signal models a size that
increases quadratically over time while the animation is progressing.
In the animation, graphic elements (Lines 3-10) and visual effects
(Lines 11-14) are freely combined. For example, Line 16 adds to
the animation a circle whose x and y center coordinates increase
indefinitely (i.e., the circle is moving over the diagonal of the canvas)
and whose size is pulsing regularly.

Sadly, the execution incurs in a DivisionByZeroException.
In a traditional debugger, a programmer would proceed roughly as
follows. From the stacktrace, she knows that the exception originates
in Line 9, which computes the new (time-changing) size of a custom
picture in the animation. However, as the combination of graphic
elements and visual effects depends on control flow, (e.g., based on
user interaction in a CASE environment), the root cause of the error
is hard to detect. The attempt to add a breakpoint on the evaluation
of the signal expression in Line 9 will only stop the execution upon
every change of the time signal. Also, this approach will consider
all objects of class Picture, even if different Picture instances
own an independently updated size signal – only one of them faulty.
In summary, this process does not help finding the bug unless the
programmer reconstructs the overall shape of the dependency graph
and realizes that there is a dependency between a pulsing signal
and a size signal. The former reaching zero causes the exception.

1

2

3

4

Figure 10: RP Debugging for software comprehension.

In RP Debugging, the graph is the fundamental model and the
tedious process of reconstructing the graph is not necessary. Also,
the programmer can set a breakpoint on the node that throws the
exception to stop the execution before the exception occurs (after an
exception, the graph can be used to set a breakpoint the next time).
Next, the programmer can inspect the shape of the graph, its current
values, and she can detect incorrect dependencies. Conditional
breakpoints can further speed up this process (Section 4.6).

4.3 Understanding RP programs
We now consider the use of RP Debugging not related to a

specific bug. We refer to a common scenario where developers
use a debugger for software comprehension. Often developers step
through an application to figure out what is the control flow and
which are the (dynamic) relations among runtime entities. In this
process, developers traverse the control flow across functions and
mentally connect functions calls to their declarations [23].

This technique works well for imperative programming, but RP
abstractions make it rather ineffective. Figure 10 (left), shows a
control flow that spawns over four modules (the gray arrow defines
a possible execution order). Several reactive values a, b, ..., g are
defined along the flow. Finally, the value of a, a()=3, is updated.

We consider the use of a traditional debugger to inspect the behav-
ior after the update. As RP is declarative, there are several possible
evaluation orders of signal expressions after an update. For example,
a developer may witness the debugger jumping across3:

(g, mod 4)(b, mod 1)(d, mod 3)(e, mod 3)(c, mod 2)(f, mod 4)
where (x, mod m) refers to the evaluation of x’s signal expression
in module m. Unfortunately, such execution trace would puzzle
any developer and can hardly help program comprehension. There
are two aspects. (1) Erratic behavior: Because of the declarative
nature of RP, signal declarations (and updates), conceptually, do
not have any order. This model creates a tension with the operation
mode of debuggers for imperative programming which instead step
through ordered statements. In RP, the only constraint on order
of signal expressions evaluation is that dependencies are satisfied,
hence the key to understand program execution is data flow across
the dependency graph (Figure 10, right). (2) Many-to-many re-
lations Upon a signal/var change, the debugger jumps to another
location of the code, where a dependent signal is updated – a case
similar to a function call, at first sight. However, a function call
is a may-to-one relation: There are (potentially) several calls for
each function definition. This is not the case for signals which are
3We assume that the debugger automatically skips non relevant
classes of the RP library – a feature known as step filters available
in many debuggers

800

1 class ReactiveList[T](list: Signal[List[T]]) {

2 val size = Signal { list().size }

3 def filter(p: T => Boolean) =

4 new ReactiveList[T](Signal { list().filter(p) })

5 ...

6 }

7 class SourceList[T](list: Var[List[T]]) extends
8 ReactiveList[T](list) {

9 def this(set: List[T]) = this(Var(set))
10 def this(vals: T∗) = this(List(vals: _∗))
11 def add(x: T) = list() = x :: list.get()

12 ...

13 }

14 val list = new SourceList[Int]

15 var prevList: ReactiveList[Int] = list

16 for (i <- 1 to 100) {

17 val filteredList = prevList.filter(_ > i)

18 prevList = filteredList

19 }

20 list.add(10)

Figure 11: RP program with a memory and responsiveness bug.

many-to-many relations: A change can be fired everywhere a var
is assigned and (potentially) multiple other signals that depend on
the change are updated in non-deterministic order. As a result, a
traditional debugger, after a var assignment, would jump to code
locations that are related only because they depend on the same data
flow – an aspect that traditional debuggers cannot capture. Notice-
ably, a graph structure with a high number of signals depending on
a few vars – the configuration that magnifies the effect of many-
to-many relations – is common in RP. For example, in animations,
changes often uniquely depend on time, as shown in Section 4.2.
Similarly, in most GUIs, reactions solely depend on mouse clicks,
mouse moves, and key insertions.

RP Debugging is based on the observation that the execution
model that helps programmers’ comprehension is not the (non deter-
ministic) flow across signal expressions, but rather the graph where
dependencies are expressed explicitly (Figure 10, right). This way,
the execution logic of the program can be given a meaning based on
explicit data flow.

4.4 Memory and Time Leaks
When RP frameworks are implemented as libraries/embedded

DSLs [33, 48, 7, 27], the interaction between imperative code and
RP code can lead to surprising behavior.

Consider the example in Figure 11, which shows an implementa-
tion of a reactive data structure in Scala.4 Reactive data structures
expose their attributes as signals [26]. For example, the size at-
tribute (Line 2) is a signal that always contains the updated size
of the list and can be composed with other signals. In Figure 11,
the implementation is based on an internal list (Line 7). When a
modifier method is called, the internal list is updated and change
propagates to dependent values. Methods that return a list, such as
filter, allocate a new list which depends on the current internal
list. Such solution is correct according to the semantics of reactive
data structures: The filter method returns a list automatically up-
dated upon insertion into the original list (Line 17). Unfortunately,
every time the filter method is called, a new signal is created to
keep the new list updated (Line 3). As programmers can pass the list
around in the code, a function may apply the filter operator to the
list and, at a later time, pass the result to another function which also
applies filtering. In a large code base, this process may easily repeat
in an undisciplined way – for simplicity we show the effect with
a loop, Line 17. The dependency graph grows in an uncontrolled
manner with two consequences: (1) out of memory errors due to the
4For simplicity we consider a basic implementation not integrated
with the Scala Collections library.

1 val finalImage = Signal{

2 if (mousePosition() overlaps button)

3 computeShadowImage(image())

4 else
5 image()

6 }

7 //−− Refactoring−−
8 val overlaps = Signal{ mousePosition() overlaps button }

9 val finalImage = Signal{

10 if (overlaps())

11 computeShadowImage(image())

12 else
13 image()

14 }

Figure 12: Performance bottleneck.

allocated signals, and (2) reduced responsiveness due to the long
propagation chain.

A traditional debugger would not detect (1) except if equipped
with some functionality to display the growing heap structure. Even
in this case, a programmer would be forced to reason at a very low
level, in terms of objects and references. (2) would remain definitely
unexplained unless the programmer manually reconstructs the shape
of the dependency graph.

With RP Debugging, visualizing the dependency graph shows
how dependencies grows for every filter call. This way, it is
possible to immediately identify (1) memory consumption – as
excessive creation of new nodes – and (2) decrease of responsiveness
– due to chains that are too long in the graph.

4.5 Performance bugs
We now consider performance of reactive applications. In impera-

tive programming, update of dependent computations is explicit and
programmers easily control performance of the update process. In
RP, instead, updates are transparent, and different performance be-
haviors can emerge for functionally equivalent dependency graphs.

Consider an application where an image is shadowed every time
the mouse cursor moves over a button (Figure 12). The image to
display is modeled by the finalImage signal which depends on
the mousePosition signal and the image signal. Unfortunately,
once the conditional becomes true (Line 2), the finalImage signal
is evaluated every time mousePosition changes its value. Each
evaluation also unnecessarily recomputes the shadowed image with
computeShadowImage.

After noticing poor performance, in a traditional setting, a pro-
grammer may check the profiling information, which shows the
relative time spent in each method call. The result reveals that
a lot of time is spent inside the computeShadowImage call. At
this point, the finalImage signal becomes suspicious: The devel-
oper might add a breakpoint to the signal expression associated to
finalImage. The following debugging session will continuously
hit against the breakpoint, indirectly suggesting that there is an issue
with the update mechanism. The programmer will finally identify
the mousePosition() signal as the source of the problem.

With RP Debugging, the programmer can simply inspect the
structure of the dependency graph. She will notice (1) that the
finalImage node is computationally intensive. (2) that the node
depends on mousePosition and image. (3) that the node out-
put changes a minor fraction of times compared to the amount of
reevaluations – thanks to relative performance estimation in RP De-
bugging. She can easily conclude what the problem is and refactor
the signal as the bottom part of Figure 12 shows. The refactored
version introduces an intermediate overlaps signal, which does
not change when the condition remains true. This way, the signal
expression of finalImage is evaluated only when necessary.

801

Query Description
nodeCreated(node) Node creation

nodeEvaluated(node) Node evaluation

nodeValueSet(node) Value of a node is set

dependencyCreated(node1, node2) Dependency creation

evaluationYielded(node, value) Evaluation yields value

evaluationException(node) Evaluation throws exception

Figure 13: The Query Language

4.6 Advanced RP Debugging
Besides the features described above, RP Debugging provides

advanced features that help developers finding the root cause of a
bug. We devote less space to these functionalities as they are essen-
tially an application of existing techniques to RP Debugging. Yet,
they greatly simplify debugging RP software in certain scenarios.

Inspecting History.
Inspired by omniscent debugging and back-in-time debugging

(Section 8), RP Debugging supports a back-in-time mode where
changes to the dependency graph over time can be inspected by
navigating history back and forth. This way, programmers observe
the evolution of the graph in terms of changing dependencies, node
creations and node updates.

This technique is particularly useful to reconstruct the cause of a
failure because it avoids reexecuting the entire program when the
error occurred somewhere in the past execution. For example, when
the reevaluation of a signal expression leads to an exception, one
can go back in time and find the var update that caused the failure.

Conditional Breakpoints and Queries.
A query language helps programmers identifying relevant points

in the program execution. The purpose is twofold. First, if a query
is entered before the execution in debugging mode, the debugger
suspends the program once a matching event occurs. This use is
similar to conditional breakpoints. Second, in back-in-time mode,
in case history is too long for manual inspection, programmers can
specify a query to find the relevant point in the graph evolution.

Figure 13 shows the commands in the query language. These are
the most common cases according to our experience (Section 6) but
since queries are parsed with ANTLR [1] and trivially translated
to Esper queries (Section 5) the language can be easily extended.
The use of queries as conditional breakpoints is a powerful tool to
shorten the stepping process and stop the execution exactly where
necessary. For example in the “Bugs in Signal Expressions” example
(Section 4), one can set an evaluationException breakpoint on
the size signal and directly inspect the dependencies in the graph
when the exception is thrown.

5. IMPLEMENTATION
Reactive Inspector, our reference implementation of RP De-

bugging, is an Eclipse plugin integrated with the debugger of
the Scala Eclipse IDE [49]. Reactive Inspector supports the
REScala [47] reactive language and is made of about 8000 LOC.
In Reactive Inspector (Figure 14), when the user is debugging a
reactive application (1), the dependency graph is displayed in the
GUI (2). Users can set a breakpoint on a node (3). A sliding bar
provides access to the previous states in the history of the graph (4)
and an input field allows one to specify a query on previous state or
as a conditional breakpoint (5). For illustration, we also show the
case of multiple active dependency graphs (6) where colors indicate
the performance of each node. In the enlarged detail (7) each node
provides information about the signal name, type and current value.

Figure 15 shows the plugin architecture. When the plugin is

1

6 7

2

3

5

4

Figure 14: The Reactive Inspector Eclipse plugin.

activated, the RP library detects significant events in the application
(1). Events are transmitted to the RP debugger to update the structure
of the graph (2) and are recorded in an in-memory database for
future use (3). The RP debugger interacts with the Scala debugger
(4) for two reasons. First, it collects information about the graph,
e.g., node values. Second, it controls program execution via the
Scala debugger. The latter is required when the user is stepping over
updates in the dependency graph or when a RP breakpoint/query
is hit. The events stored in the database can be queried or can be
played backwards in time to inspect the evolution of the graph (5).
Internally, the implementation is based on the Esper [14] complex
event processing system. Events directly generated by the program
execution or replayed from the database are filtered by Esper to
detect the conditions specified in the query.

Language Independence.
Reactive Inspector specifically targets REScala, but the ap-

proach is generally applicable. The plugin is compatible primarily
with Scala and Java-based RP languages, but virtually also with
other reactive frameworks based on languages supported in the
Eclipse IDE. RP Debugging support can be achieved by a third
party RP language implementing the interface that generates the
events consumed by the plugin. In the case of the REScala, this
functionality is implemented by a Logging trait simply mixed-in
the REScala code. Obviously, integrating our plugin with another
existing imperative debugger requires to interface our tool with the
specific debugger implementation, e.g., to request the current value
of certain nodes and to stop the execution when a breakpoint is hit.

6. EVALUATION
In this section, we present a systematic evaluation of RP Debug-

ging aiming at answering the following research question:

RQ: Is debugging reactive applications with RP Debugging
easier than with traditional debugging?
To answer RQ we organized a controlled experiment with 18 sub-

802

Reactive
App

Events

Logged data
History

Scala
Debugger

RP Debugger

Query on History

Graph

Back in time

Queries
RP
Lib

1
2

3

4

5

Figure 15: Architecture of Reactive Inspector.

jects. We assume time as a measure of simplicity. While our research
speculates on RP Debugging overperforming traditional debugging,
we take a neutral approach and we define 2-tailed statistical tests.
We consider a single alternative to RP debugging, i.e., traditional
debugging, because it is the most common solution for debugging
software applications. Section 8 discusses other options.

Object of the Experiment and Methodology.
The experiment focuses on an assignment which subjects need

to complete using traditional debugging or RP Debugging. The
assignment is composed of 6 tasks each based on a different reactive
application. Figure 16 provides a summary of the assignment. For
each task, it shows the kind of application, the feature that subjects
are suggested to use, a task description and the number of non-
comment, non-blank lines of code. Applications belong to four
categories: graphical animations, GUIs, simulations – traditional
domains for reactive programming [12, 11, 33, 7] – and synthetic
applications that just define functional dependencies among values
and propagate changes upon updates.

In each task, a subject is shown a reactive application in the IDE
and asked either to answer questions about the application behavior
(tasks 1-4) or to fix a bug (tasks 5 and 6). Tasks 1-4 are motivated by
the fact that understanding an application behavior is a common use
case for debuggers and a preliminary step to bug fixing. To ensure
that the time required is roughly the same for each task and to avoid
that overhead time, e.g., to navigate the application, is significant
compared to debugging activity, tasks 1-4, which are shorter, are
composed of 2 or 3 subtasks.

We adopted the think loudly approach where subjects comment
their actions [15, 22]. Our goal is not to analyze developers be-
havior in detail. Yet, the approach allows us to better understand
what programmers are doing, e.g., to find out whether they incur
in trivial mistakes. Our between-subjects design – traditional de-
bugging group (TD) vs. RP Debugging group (RD) – increases
variability, making harder to observe a significant effect compared
to within-subjects designs [18, 30]. However, it is robust to learning
effects, which are significant given the nature of the assignment [40].
Correctness is controlled providing tasks that are easy enough to be
completed in the available time, using unit tests for checking the
solution, and supervising the experiment to encourage subjects to
keep working on the task if the solution is not correct.

Experiment Context.
Subjects are students from a CS program in their 4th or 5th year

of study. They have similar academic background and they know
the Eclipse IDE and its debugger. All subjects have been exposed to
RP in Scala in a course. Some of them have a deeper knowledge of
RP as they also attended projects or seminars on the this topic.

Both groups completed a tutorial with a few example tasks using
the tool they would use in the experiment. To make sure that the tuto-
rial is properly covered and all subjects have a minimal background,

this activity is assisted by the staff and takes about 30 mins. To avoid
bias towards RP Debugging, Reactive Inspector is not given to
the subjects before the experiment: subjects may be curious to try
Reactive Inspector more than they would refresh their knowledge
of traditional debugging. However, the RD group was given the
manual of Reactive Inspector a few days before the experiment.

Experiment Results.
Figure 17 shows the experiment results. We initially analyze

the time that subjects required to complete the entire assignment.
Descriptive statistics provides an overview of the results: The mean
time for the TD group and the RD group are μTD = 4317.33
respectively μRD = 2572.67. Figure 18 shows the cumulative
times for the TD group and the RD group. To check if the difference
between the groups is significant, we formulate the hypothesis: H0:
Times for the TD and for the RD groups are drawn from the same
population.

Since the underlying distribution is not known, we performed a
non-parametric Mann-Whitney U test. The result shows that, with
high significance (p = 0.001) H0 can be rejected.

Group N Rank avg Rank sum p-value

TD 9 13.44 121
0.001

RD 9 5.56 50

This result provides an answer to RQ and allows us to conclude
that the RP Debugging makes debugging of RP easier.

We further analyze the data considering each task separately.
Similar to the previous case, we perform a non-parametric Mann-
Whitney U test. Results are in Figure 19. For tasks 1-3-4, H0 can
be rejected with high significance (p < 0.05), i.e., the RD group is
faster. In tasks 2, 5 and 6, H0 cannot be rejected (p > 0.05).

For tasks 2 and 6 we formulate an explanation based on the think
loudly approach. In both cases, solving the task requires to detect
whether a signal dependency is in place. In the code, however, after
creation, the signal is passed to a function. As a result, the signal
appears in (most of) the code with the name of the formal parameter.
Since Reactive Inspector shows the signals in the dependency
graph with their name at creation time, subjects struggled to detect
the dependency. The analysis of task 2 restricted to subtask 1 –
the subtask not affected by the naming issue – substantiates our
explanation showing a significant difference (p = 0.001).

The naming issue highlights a tension between the representation
via a (global) dependency graph and scope/visibility. A possible
solution is to name nodes in the graph based on the name bindings
in the current scope. Bringing this approach further, would allow
multiple of such names based on different stack frames. We leave
this research line for future work. Task 5 is harder to explain. The
p value is not far from significance (p = 0.94) and we suspect
that a larger experiment could detect an effect. A more powerful
t-test, applicable because of normal distribution (Shapiro-Wilk test,
pTD = 0.22, pRD = 0.093) also indicates a very small yet not
significant p value (p = 0.065, no variance equality assumed).

7. DISCUSSION

Dynamic Dependency Graphs.
RP Debugging is based on a dynamic model. A dependency

graph is a run time entity, it evolves during application progress
and it does not exist before the execution starts. This is a major
difference with traditional debugging where developers use the code
itself as a primary model to understand the execution and drive the
debugger, e.g., to set a breakpoint.

803

Application Features (Sub)Tasks LOC

T1: 2D simulation Tree Inspection:
-Highlight Dependencies
-Node Search

Do the following variables have a dependency ? In case describe the dependency chain
1. World.statusString ← Board.elementsChanged
2. World.statusString ← Board.elementRemoved
3. Animal.isFertile ← Animal.energy

442

T2: Fisheye animation Tree Inspection 1. What is the range of values the signal Box.interpolationValue can have at runtime?
Please give the minimum and maximum values.
2. Do the squares depend on their left or their right neighbor?

101

T3: Reactive network Tree Inspection
Reactive Breakpoints

After the execution finishes, error count is 1 due to an exception in one of the iterations.
1. On which node is the exception thrown?
2. On which iteration does the exception occur?
3. What are the values of a1, a2, a3 and a4 at the time the exception is thrown?

44

T4: Arcade Pong Game History Queries 1. What is the value of Pong.y when the right player scores his first point?
2. What is the value of Pong.x when the ball bounces the 3rd time on the bottom border?

119

T5: RSS Feedreader Tree Inspection Normally the feed items of the channel are displayed in the left panel after a channel is
selected but due to a bug if a news channel is selected from the channel box, nothing
happens. The task is to fix the bug so that all test cases are green.

507

T6: Shapes animation Tree Inspection
Tree History

The animation contains a bug: An exception is thrown and the application stops. The
task is to find the source of the exception and fix the bug. The task counts as completed,
if the animation runs without exceptions.

153

Figure 16: Tasks in the controlled experiment.

Group T1 T2 T3 T4 T1 T6 Sum

TD

1110 968 770 1115 1790 375 6128
705 455 1065 1198 590 385 4398
708 833 1174 649 437 355 4156
912 535 1438 1466 1488 430 6269
380 1330 686 303 275 465 3439
546 525 1059 668 470 514 3782
520 696 552 558 1406 461 4193
455 913 579 485 1088 332 3852
667 418 423 734 202 195 2639

Mean 667.0 741.4 860.6 797.3 860.6 390.2 4317.3

RD

269 680 393 273 150 1070 2835
242 470 250 605 205 525 2297
514 1235 550 310 245 350 3204
460 904 300 835 560 290 3349
339 464 233 200 1014 186 2436
271 300 370 365 295 172 1773
361 1067 632 414 615 378 3467
261 522 280 358 260 440 2121
223 312 248 207 414 268 1672

Mean 326.6 661.5 361.7 396.3 417.5 408.7 2572.6

Figure 17: Times in the controlled experiment.

Figure 18: Cumulative time for the TD and the RD groups.

Figure 19: Time for each task for the TD and the RD groups.

Similar to object-centric debugging ([45], Section 8), accessing
the debugging model (e.g., to inspect the content of a node) requires
that part of the program already runs. This is not an issue in practice
for two reasons. First, most RP programs define the graph structure
at their very beginning and update it in the rest. Second, similar to
object-centric debugging, RP Debugging does not conflict with
imperative debugging, rather complements it. Users can set a break-
point at a line and then refine it with a breakpoint on the graph once
the execution reaches such line and the graph is built.

Scalability of the Visualization.
Our approach potentially suffers from a scalability issue common

to software visualization tools – displaying a software model that
is manageable in size. In most cases this is not an issue for the
following reasons. First, in many applications, the dependency
graph is relatively small ([10] provides some numeric evidence
collected in our experience with RP), at least compared to an object
graph, which would be hard to display even for minimal applications.
Second, small applications, like input validation forms, are a typical
domain for RP [3], hence, even an approach with limited scalability
capabilities can address a major fraction of use cases.

To mitigate the effect of potentially large graphs we took some
countermeasures. First, programmers can inspect the graph(s) asso-
ciated to a single reactive entity, e.g., the graph(s) generated by a
var. This solution, most of the times, considerably reduces the size
of the displayed graph. Second, programmers can select a node and
collapse the subgraph originating from there – the effect is to prune
parts of the graph that are not interesting for the debugging task at
hand. Finally, developers can search nodes in the graph by name
and are shown a thumbnail that helps navigation in large graphs.

Limitations.
The Eclipse Scala IDE, on which Reactive Inspector is based,

plugs on the Java Eclipse debugger using aspect-oriented program-
ming technology. In the Eclipse Scala IDE, the treatment of high-
level Scala abstractions that depart from Java is only partially com-
plete. This issue is apparent, e.g., when stepping over closures. Also,
step filters are not (yet) supported. Our plugin inherits those issues,
at a partial detriment of the user experience. Unfortunately, this
results in a time overhead that, for complex tasks, reduces the size
of the observable effect and makes it harder to detect a difference

804

between groups in the evaluation (Section 6). Finally, for now, our
research does not address efficient implementation. Especially for
back-in-time and omniscient debuggers, well known techniques to
efficiently store and retrieve execution data exist (Section 8). We
believe, that these solutions are largely orthogonal to our approach.

8. RELATED WORK
In related work we do not consider RP – outlined in Section 1.

The interested reader can refer to the survey [3].

Live Programming.
ELM [8] is a functional programming language for Web GUIs

and animations. It is similar to Haskell and compiles to Javascript.
Recent versions of ELM support an experimental back in time de-
bugger with hot swapping [43]. Thanks to the purity of ELM, users
can play the animation backwards in time. Live programming [31,
5] is about keeping the GUI in sync with code changes. In this line
of work [32], McDirmid and Edwards explored the use of managed
time for live programming: Application time is controlled by the
runtime environment – an approach inspired by automatic memory
control of garbage-collected VMs. This solution can produce results
analogous to back in time execution for GUI applications.

Contrarily to our work, these systems focus only on animations.
In live programming, the graphical evolution of the animation over
time is itself a model that developers can use to reason about the exe-
cution. However, this approach is only applicable for GUI software
– hence our choice to use the dependency graph as the reference
model for RP Debugging.

Omniscient Debugging.
Omniscient debuggers [37, 39] support back in time navigation

across previous program states. In omniscient debuggers, all events
from the execution are logged and can be inspected and queried.
As a result, programmers can ask the debugger which events (e.g.,
an assignment) are responsible for a certain current state (e.g., a
variable being null). In a traditional debugger, this analysis requires
a tedious process, like setting a breakpoint on the assignment and
stepping across the rest of the execution.

Performance is a fundamental issue in omniscient debugging be-
cause events from program execution must be processed and stored
efficiently. Recent research addresses these issues with different
techniques including specialized distributed databases [39], virtual
machine integration [24], and efficient data structures [38]. We
consider performance orthogonal to our work and we expect that
those optimization techniques are also applicable to our approach.

Advanced Debuggers.
Object-centric debugging [45] supports debugging operations that

are specific of the OO paradigm (e.g., set a breakpoint on an object
call). Similar to our work, the premise of object-centric debugging
is that a static representation of the program (the code) and the stack-
based runtime model adopted by most debuggers are not suitable
for higher level abstractions – objects in the case of object-centric
debugging, RP in our case. Also, similar to our work, object-centric
debugging is based on a runtime representation of the program.

Recent research investigates expressive breakpoints. Debugging
with control-flow breakpoints [6] adopts aspect-oriented program-
ming to specify breakpoint conditions based on control flow. State-
ful breakpoints [4] express a stop condition based on a pattern of
temporal order among other breakpoints and based on context vari-
ables captured from the program. Our query language is a less
sophisticated mechanism for conditional breakpoints.

Olsson et al. [36] developed a data-flow model where users can
combine low-level events from the debugging process to define com-
plex events expressing interesting breakpoint conditions. Marceau et
al. [28] adopted a similar approach to develop a scriptable debugger.
In their solution, the scripting language to filter and combine events
from the execution of the program is an RP language. In contrast to
this paper, both works target debugging imperative languages.

Similar to RP, traditional debuggers are unsuitable for lazy purely
functional languages. In this context, Nilsson and Fritzson propose
algorithmic debugging [35], where developers are asked questions
about increasingly smaller parts of the program until the bug is
found. In contrast to algorithmic debugging, which targets a single
paradigm, our work aims at complementing traditional debuggers
for languages with both reactive and imperative abstractions.

Complex Event Processing and Stream Processing.
Oracle Complex Event Processing (CEP) Engine provides the

CEP visualizer [44] to specify queries in a data-flow graph using a
CASE interface. In contrast to RP Debugging, the support for the
user is limited to query design and the tool does not provide runtime
information.

The Event Flow Debugger is the debugging tool of Microsoft
StreamInsight CEP system [17]. Gedik et al. [16], propose a similar
tool for the Spade IBM stream processing language. Analogous
to RP Debugging, in both systems, users can inspect the flow
of events through the graph-like structure defined by queries. In
contrast to our work, these solutions are limited to CEP and do not
handle generic computations like those inside RP nodes. Also, these
systems are limited to a fixed graph topology, while in RP the graph
changes dynamically.

Kuo et al. designed a CASE programming environment for the
StreamIt stream processing language [20] which supports inspection
of events flows occurring at runtime. The focus is, however, on
providing a deterministic order for facilitating the debugging of
systems with parallel (distributed) event stream generators. Pauw
et al. [9] developed a visualization system for stream processing.
Their tool displays a graphical overview of events flow in distributed
stream processing applications. In this setting with high throughput
breakpoint-based debugging is not viable as it blocks a node disturb-
ing the relative order of events. By contrast, RP Debugging targets
fine grained debugging (including breakpoints) for RP applications.

9. CONCLUSION AND FUTURE WORK
In this paper, we presented RP Debugging, a debugging tech-

nique for applications written in the reactive style. In contrast to ex-
isting debugging approaches targeting the imperative programming
model, our solution specifically aims at the declarative abstractions
of RP. With RP Debugging developers use the dependency graph
– the same mental model they adopt for reasoning about reactive
applications – as the reference model to debug their applications.

We plan to further extend Reactive Inspector to support more
RP languages (Section 5). On the conceptual side, we plan to extend
RP Debugging to address reactive models that include complex
event correlations and asynchronous signal computations.

10. ACKNOWLEDGMENTS
This work is supported by the European Research Council, grant

No. 321217. We thank Oscar Nierstrasz for the useful discussion
on domain-specific debugging. We thank Matthias Jahn, Simon
Sprankel, Michael Hausl, Sebastian Ruhleder, Gerold Hintz and Pas-
cal Weisenburger for contributing to the development of Reactive
Inspector and to the experiments on visualizing RP programs.

805

11. REFERENCES
[1] ANTLR parser generator. http://www.antlr.org/.

[2] REScala reactive language website.
http://www.rescala-lang.com/.

[3] E. Bainomugisha, A. L. Carreton, T. v. Cutsem, S. Mostinckx,
and W. d. Meuter. A survey on reactive programming. ACM
Comput. Surv., 45(4):52:1–52:34, Aug. 2013.

[4] E. Bodden. Stateful breakpoints: A practical approach to
defining parameterized runtime monitors. In Proceedings of
the 19th ACM SIGSOFT Symposium and the 13th European
Conference on Foundations of Software Engineering,
ESEC/FSE ’11, pages 492–495, New York, NY, USA, 2011.
ACM.

[5] S. Burckhardt, M. Fahndrich, P. de Halleux, S. McDirmid,
M. Moskal, N. Tillmann, and J. Kato. It’s alive! continuous
feedback in UI programming. In Proceedings of the 34th ACM
SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’13, pages 95–104, New York, NY,
USA, 2013. ACM.

[6] R. Chern and K. De Volder. Debugging with control-flow
breakpoints. In Proceedings of the 6th International
Conference on Aspect-oriented Software Development, AOSD
’07, pages 96–106, New York, NY, USA, 2007. ACM.

[7] G. H. Cooper and S. Krishnamurthi. Embedding dynamic
dataflow in a call-by-value language. In Proceedings of the
15th European Conference on Programming Languages and
Systems, ESOP’06, pages 294–308, Berlin, Heidelberg, 2006.
Springer-Verlag.

[8] E. Czaplicki and S. Chong. Asynchronous functional reactive
programming for GUIs. In Proceedings of the 34th ACM
SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’13, pages 411–422, New York, NY,
USA, 2013. ACM.

[9] W. De Pauw, M. Leţia, B. Gedik, H. Andrade, A. Frenkiel,
M. Pfeifer, and D. Sow. Visual debugging for stream
processing applications. In Proceedings of the First
International Conference on Runtime Verification, RV’10,
pages 18–35, Berlin, Heidelberg, 2010. Springer-Verlag.

[10] J. Drechsler, G. Salvaneschi, R. Mogk, and M. Mezini.
Distributed REScala: An update algorithm for distributed
reactive programming. In Proceedings of the 2014 ACM
International Conference on Object Oriented Programming
Systems Languages & Applications, OOPSLA ’14, pages
361–376, New York, NY, USA, 2014. ACM.

[11] C. Elliott. Functional implementations of continuous modeled
animation. In Proceedings of the 10th International
Symposium on Principles of Declarative Programming,
PLILP ’98/ALP ’98, pages 284–299, London, UK, UK, 1998.
Springer-Verlag.

[12] C. Elliott and P. Hudak. Functional reactive animation. In
Proceedings of the second ACM SIGPLAN international
conference on Functional programming, ICFP ’97, pages
263–273, New York, NY, USA, 1997. ACM.

[13] C. M. Elliott. Push-pull functional reactive programming. In
Proceedings of the 2nd ACM SIGPLAN symposium on Haskell,
Haskell ’09, pages 25–36, New York, NY, USA, 2009. ACM.

[14] Esper event correlation system. http://www.espertech.com/.

[15] S. D. Fleming, E. Kraemer, R. E. K. Stirewalt, S. Xie, and
L. K. Dillon. A study of student strategies for the corrective
maintenance of concurrent software. In Proceedings of the
30th International Conference on Software Engineering, ICSE
’08, pages 759–768, New York, NY, USA, 2008. ACM.

[16] B. Gedik, H. Andrade, A. Frenkiel, W. De Pauw, M. Pfeifer,
P. Allen, N. Cohen, and K.-L. Wu. Tools and strategies for
debugging distributed stream processing applications. Softw.
Pract. Exper., 39(16):1347–1376, Nov. 2009.

[17] T. Grabs, S. Roman, K. Ramkumar, J. Goldstein, and
R. Fernandez. Introducing Microsoft StreamInsight, 2010.

[18] S. Hanenberg. An experiment about static and dynamic type
systems: Doubts about the positive impact of static type
systems on development time. In Proceedings of the ACM
International Conference on Object Oriented Programming
Systems Languages and Applications, OOPSLA ’10, pages
22–35, New York, NY, USA, 2010. ACM.

[19] P. Hudak, A. Courtney, H. Nilsson, and J. Peterson. Arrows,
robots, and functional reactive programming. In Summer
School on Advanced Functional Programming 2002, Oxford
University, volume 2638 of Lecture Notes in Computer
Science, pages 159–187. Springer-Verlag, 2003.

[20] K. Kuo, R. M. Rabbah, and S. Amarasinghe. A productive
programming environment for stream computing. In In
Proceedings of the 2nd Second Workshop on Productivity and
Performance in High-End Computing, 2005.

[21] Labview interacting debugger.
www.ni.com/getting-started/labview-basics/debug.

[22] T. D. LaToza, D. Garlan, J. D. Herbsleb, and B. A. Myers.
Program comprehension as fact finding. In Proceedings of the
the 6th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering, ESEC-FSE ’07, pages
361–370, New York, NY, USA, 2007. ACM.

[23] T. D. LaToza and B. A. Myers. Developers ask reachability
questions. In Proceedings of the 32Nd ACM/IEEE
International Conference on Software Engineering - Volume 1,
ICSE ’10, pages 185–194, New York, NY, USA, 2010. ACM.

[24] A. Lienhard, T. Gîrba, and O. Nierstrasz. Practical
object-oriented back-in-time debugging. In Proceedings of the
22Nd European Conference on Object-Oriented
Programming, ECOOP ’08, pages 592–615, Berlin,
Heidelberg, 2008. Springer-Verlag.

[25] Lift reactive web site. http://scalareactive.org/.

[26] I. Maier and M. Odersky. Higher-order reactive programming
with incremental lists. In Proceedings of the 27th European
Conference on Object-Oriented Programming, ECOOP’13,
pages 707–731, Berlin, Heidelberg, 2013. Springer-Verlag.

[27] I. Maier, T. Rompf, and M. Odersky. Deprecating the
Observer Pattern. Technical report, 2010.

[28] G. Marceau, G. H. Cooper, J. P. Spiro, S. Krishnamurthi, and
S. P. Reiss. The design and implementation of a dataflow
language for scriptable debugging. Automated Software Engg.,
14(1):59–86, Mar. 2007.

[29] A. Margara and G. Salvaneschi. We have a DREAM:
Distributed reactive programming with consistency
guarantees. In Proceedings of the 8th ACM International
Conference on Distributed Event-Based Systems, DEBS ’14,
pages 142–153, New York, NY, USA, 2014. ACM.

[30] C. Mayer, S. Hanenberg, R. Robbes, E. Tanter, and A. Stefik.
An empirical study of the influence of static type systems on
the usability of undocumented software. In Proceedings of the
ACM International Conference on Object Oriented
Programming Systems Languages and Applications, OOPSLA
’12, pages 683–702, New York, NY, USA, 2012. ACM.

[31] S. McDirmid. Living it up with a live programming language.
In Proceedings of the 22Nd Annual ACM SIGPLAN

806

Conference on Object-oriented Programming Systems and
Applications, OOPSLA ’07, pages 623–638, New York, NY,
USA, 2007. ACM.

[32] S. McDirmid and J. Edwards. Programming with managed
time. In Proceedings of the 2014 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on
Programming & Software, Onward! 2014, pages 1–10, New
York, NY, USA, 2014. ACM.

[33] L. A. Meyerovich, A. Guha, J. Baskin, G. H. Cooper,
M. Greenberg, A. Bromfield, and S. Krishnamurthi. Flapjax: a
programming language for Ajax applications. In Proceeding
of the 24th ACM SIGPLAN conference on Object oriented
programming systems languages and applications, OOPSLA
’09, pages 1–20, New York, NY, USA, 2009. ACM.

[34] R. Newton, G. Morrisett, and M. Welsh. The Regiment
Macroprogramming System. In Information Processing in
Sensor Networks, 2007. IPSN 2007. 6th International
Symposium on, pages 489–498, 2007.

[35] H. Nilsson and P. Fritzson. Algorithmic debugging for lazy
functional languages. In M. Bruynooghe and M. Wirsing,
editors, Programming Language Implementation and Logic
Programming, volume 631 of Lecture Notes in Computer
Science, pages 385–399. Springer Berlin Heidelberg, 1992.

[36] R. A. Olsson, R. H. Crawford, and W. W. Ho. A dataflow
approach to event-based debugging. Softw. Pract. Exper.,
21(2):209–229, Feb. 1991.

[37] G. Pothier and E. Tanter. Back to the future: Omniscient
debugging. Software, IEEE, 26(6):78–85, Nov 2009.

[38] G. Pothier and E. Tanter. Summarized trace indexing and
querying for scalable back-in-time debugging. In Proceedings
of the 25th European Conference on Object-oriented
Programming, ECOOP’11, pages 558–582, Berlin,
Heidelberg, 2011. Springer-Verlag.

[39] G. Pothier, E. Tanter, and J. Piquer. Scalable omniscient
debugging. In Proceedings of the 22Nd Annual ACM
SIGPLAN Conference on Object-oriented Programming

Systems and Applications, OOPSLA ’07, pages 535–552, New
York, NY, USA, 2007. ACM.

[40] J. Quante. Do dynamic object process graphs support program
understanding? - a controlled experiment. In Program
Comprehension, 2008. ICPC 2008. The 16th IEEE
International Conference on, pages 73–82, June 2008.

[41] Demo for the internals of the ELM debugger.
www.youtube.com/watch?v=FSdXiBLpErU.

[42] Dependency graph visualization in the Unreal Engine 4, Tools
Demonstration GDC 2014, minutes 6:46 and 8:45.
www.youtube.com/watch?v=9hwhH7upYFE#t=384.

[43] ELM debugger. http://debug.elm-lang.org/.

[44] Oracle CEP visualizier.
http://docs.oracle.com/cd/E17904_01/doc.1111/e14302.pdf.

[45] J. Ressia, A. Bergel, and O. Nierstrasz. Object-centric
debugging. In Proceedings of the 34th International
Conference on Software Engineering, ICSE ’12, pages
485–495, Piscataway, NJ, USA, 2012. IEEE Press.

[46] G. Salvaneschi, S. Amann, S. Proksch, and M. Mezini. An
empirical study on program comprehension with reactive
programming. In Proceedings of the 22Nd ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, FSE 2014, pages 564–575, New York, NY, USA,
2014. ACM.

[47] G. Salvaneschi, G. Hintz, and M. Mezini. REScala: Bridging
between object-oriented and functional style in reactive
applications. In Proceedings of the 13th International
Conference on Modularity, MODULARITY ’14, pages 25–36,
New York, NY, USA, 2014. ACM.

[48] G. Salvaneschi and M. Mezini. Reactive behavior in
object-oriented applications: An analysis and a research
roadmap. In Proceedings of the 12th Annual International
Conference on Aspect-oriented Software Development, AOSD
’13, pages 37–48, New York, NY, USA, 2013. ACM.

[49] Scala Eclipse IDE. http://scala-ide.org/.

807

